

UTAH GOVERNOR'S OFFICE OF ENERGY DEVELOPMENT

Utah Climate

Grade/Subject: 8th grade integrated science

Strand/Standard 8.4.4 Analyze and interpret data on the factors that <u>change</u> global temperatures and their <u>effects</u> on regional climates. Examples of factors could include agricultural activity, changes in solar radiation, fossil fuel use, or volcanic activity. Examples of data could include graphs of the atmospheric levels of gases, seawater levels, ice cap coverage, human activities, or maps of global and regional temperatures. (ESS3.D)

Lesson Performance Expectations:

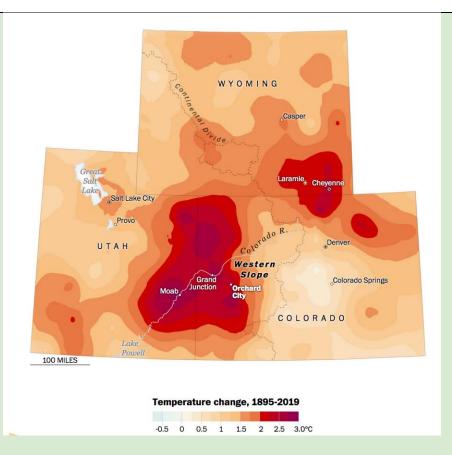
- Students will analyze data sets to interpret factors changing Utah temperatures and it's regional climate.
- Students will report on the comparison they research and apply it to Utah.

Materials:

- Student Sheet
- Digital device for research

Time: 1 60-minute period

Teacher Background Information:

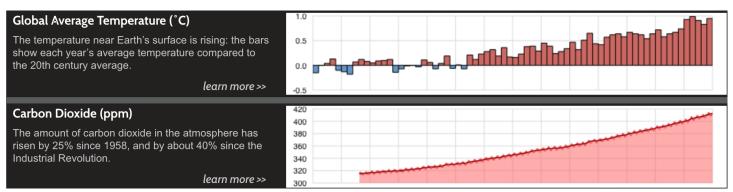

- Using reputable sources students are able to evaluate cause and effect relationships of climate change.
- Utah is currently experiencing greater than average yearly temperature increases (Washington Post)

Student Background Knowledge:

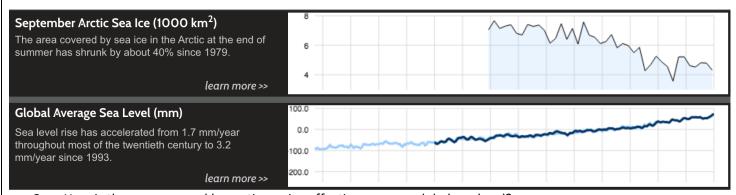
- Students know that hydrocarbons have supported our standard of living today.
- Students know carbon dioxide is a greenhouse gas and that it is released when fossil fuels are burned.
- Students know that plants absorb carbon dioxide.

Teacher Step by Step: A 3-D lesson should insist students think deeply. Provide time and space for the students to experience the phenomenon and ask questions.

Introduce Phenomenon (on screen or as a handout)

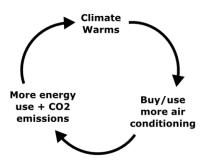


- a. Ask students to observe and explain the phenomena.
- b. Assign student pairs to analyze and present on relationships between climate factors by using data.
- c. Have students can compare various climate factors using graphs of each factor from climate.gov. Students can select factors to research from this site and or they can draw pairs out of a hat from the list below (the list is not exhaustive). To prevent students from choosing the same pair, they can submit their selection electronically or by writing it on the board
 - i. Temperature vs. carbon dioxide
 - ii. Carbon dioxide vs. snow
 - iii. Sea level vs. arctic sea ice
 - iv. Arctic sea ice vs. ocean heat
 - v. Ocean heat vs. sun's energy
 - vi. Sun's energy vs. glaciers
 - vii. Glaciers vs. heat trapping gases
 - viii. Temperature vs. snow
 - ix. Sea level vs. sun's energy
 - x. Heat trapping gases vs. sun's energy
 - xi. Sea level vs. carbon dioxide
- d. Explain "direct" and "inverse" relationships to students. A *Direct Relationship* means that if one variable increases the other variable will increase as well. If one decreases, the other will decrease as well. The radius of a circle and its area are in a direct relationship since an increase of the radius also results in an increase of the area. Similarly, if the radius decreases so does the area. Two variables have an *Inverse Relationship* if one increases while the other decreases or one decreases while the other increases. An example of an inverse relationship is air temperature and cloud cover. When cloud cover increases the


- air temperature often decreases.
- e. Identifying a "feedback loop" may help students better understand these relationships. Once a variable has started, it may influence another factor to continue (positive feedback) or it may extinguish the factor (negative feedback)
- f. Display graphs (see instruction C) through the projector while students present.
- g. Present the rainfall map and give students time to compare it to the temperature map.

Assessment of Student Learning. Students will construct an explanation about how the movement of carbon can result in changes to one of the systems in their models. Students will use quantitative evidence from their model.

Standardized Test Preparation:



- 1. Scientists have long predicted that carbon dioxide put in the atmosphere through burning of fuels, would warm the atmosphere. How does this data support the prediction?
 - a. Global temperatures are rising as carbon dioxide levels are rising.*
 - b. The carbon dioxide levels are rising more quickly than the global temperatures.
 - c. The average global temperatures have an indirect relationship to carbon dioxide levels.
 - d. The rising global temperatures are the reason for the increased carbon dioxide levels.

- 2. How is the area covered by arctic sea ice affecting average global sea level?
 - a. The increase in sea level area melts the arctic sea ice.
 - b. The reduction in sea ice area allows more ocean surface to be visible.
 - c. The reduction in sea ice is due to melting ice which adds water to the sea.*
 - d. There is a direct relationship between sea ice area and sea level average.

Feedback Loop

- 3. Air conditioning relies on an energy source that is likely based on fuel burning. Why is this an example of a positive feedback loop?
 - a. The loop begins with a human cause.
 - b. The loop and its effects diminish over time.
 - c. The loop is circular with no end or starting point.
 - d. The loop and its effects become greater over time.*
- 4. Trees and other vegetation absorb carbon dioxide as they grow. Planting trees creates which type of feedback loop?
 - a. negative, the number of trees will increase as the amount of carbon dioxide goes down.
 - b. negative, the number of trees will increase as the amount of carbon dioxide goes up.
 - c. positive, the number of trees will increase as the amount of carbon dioxide goes down.*
 - d. positive, the number of trees will increase as the amount of carbon dioxide goes up.

Extension of lesson and Career Connections:

- 1. Extension: Students can mine the abundant weather data for their city or county. They can create graphs comparing variables similar to this activity. See weather.gov or climate.usu.edu
- 2. Careers in weather and climate include private and government positions. Local meteorologists will sometimes speak in classrooms to describe their pathway.
- 3. Ask students investigate software like GIS and ENVI and how remote sensing technologies are used to illustrate this data on map projections. Explore career options, education and certifications students can pursue with this technology.